Общие закономерности движения крови по кровеносному руслу.

Сопротивление току крови, а следовательно и падение давления на различных участках сосудистой системы весьма различны. Оно зависит от общего просвета и числа сосудов в разветвлении. Наибольшее падение давления крови — не менее 50% от начального давления – происходит в артериолах. Число артериол в сотни раз больше числа крупных артерий при сравнительно небольшом увеличении общего просвета сосудов. Поэтому потери давления от пристеночного трения в них весьма велики. Общее число капилляров еще больше, однако длина их настолько мала, что падение давления крови в них хотя и существенно, но меньше, чем в артериолах.

В сети венозных сосудов, площадь сечения которых в среднем в два раза больше площади сечения соответствующих артерий, скорость течения крови невысока и падения давления незначительны. В крупных венах около сердца давление становится на несколько миллиметров ртутного столба ниже атмосферного. Кровь в этих условиях движется под влиянием присасывающего действия грудной клетки при вдохе.

Течение крови в сосудистой системе в нормальных условиях имеет ламинарный характер. Оно может переходить в турбулентное при нарушении этих условий, например, при резком сужении просвета сосудов. Подобные явления могут иметь место при неполном открытии или, наоборот, при неполном закрытии сердечных или аортальных клапанов.

Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.

Гидравлическое сопротивление сосудов X = 8 l /(R 4 ), где l — длина сосуда, R — его радиус,  — коэффициент вязкости, вводится на основании аналогий законов Ома и Пуазейля (движение электричества и жидкости описываются общими соотношениями).

Аналогия между электрическим и гидравлическим сопротивлениями позволяет использовать правило нахождения электрического сопротивления последовательного и параллельного соединений проводника, для определения гидравлического сопротивления системы последовательно или параллельно соединенных сосудов. Так, например, общее гидравлическое сопротивление последовательно и параллельно соединенных сосудов находится по формулам:

Зависимость давления и скорости течения крови от участка сосудистого русла.

Жидкости относительно несжимаемы. Однако, при действии внешних сил жидкость находится в особом напряженном состоянии. Говорят, что в этом случае жидкость находится под давлением, которое передается во все стороны (закон Паскаля). Оно действует также и на стенки сосуда или тела погруженного в жидкость.

Идеальной называется, несжимаемая и неимеющая внутреннего трения или вязкости, жидкость. Стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются.

Установившееся течение характеризуется соотношением: V = vS = const. Это соотношение называется условием неразрывности струи.

При стационарном течении идеальной жидкости полное давление, равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока: p + gh + v 2 /2 = const – уравнение Бернулли.

Все члены этого уравнения имеют размерность давления и называются: p = pст – статическим, gh = pг – гидростатическим, v 2 /2 = pдин – динамическим.

Для горизонтальной трубки тока гидростаическое давление остается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид:

Общие закономерности движения крови по кровеносному руслу

Физические основы гемодинамики.

Гемодинамикойназывают область биомеханики, в которой исследуется движение крови по сосудистой системе. Основная задача гемодинамики — установить взаимосвязь между основными гемодинамическими показателями, а также их зависимость от физических параметров крови и кровеносных сосудов. Физической основой гемодинамики является гидродинамика. Течение крови зависит как от свойств крови, так и от свойств кровеносных сосудов. К основным гемодинамическим показателям относятся давление и скорость кровотока. Давление — это сила, действующая со стороны крови на сосуды, приходящаяся на единицу площади: Р = F/S. Различают объемную и линейную скорость кровотока. Объемной скоростью Q называют величину, численно равную объему жидкости, протекающему в единицу времени через данное сечение трубы : Q = V/ t [м 3 / с]. Линейная скорость представляет путь, проходимый частицами в единицу времени: V = l / t [м / с]. Линейная скорость и объемная связаны простым соотношением: Q = V·S. Так как жидкость несжимаема, то через любое сечение трубы в единицу времени протекают одинаковые объемы жидкости:

Это интересно:  Права управляющей компании многоквартирного дома как способ выполнить услуги

Сердечно-сосудистую систему можно представить в виде замкнутой, многократно разветвленной и заполненной кровью системы трубок с эластичными стенками. Движение крови осуществляется благодаря ритмическим сокращениям сердца.

Количество крови Q, протекающее через поперечное сечение участка сосудистой системы в единицу времени и называемое объемной скоростью кровотока, зависит от разности давлений в начале и конце участка и его сопротивления току крови.

Сопротивление току крови, а следовательно и падение давления на различных участках сосудистой системы весьма различны. Оно зависит от общего просвета и числа сосудов в разветвлении. Наибольшее падение давления крови — не менее 50% от начального давления – происходит в артериолах. Число артериол в сотни раз больше числа крупных артерий при сравнительно небольшом увеличении общего просвета сосудов. Поэтому потери давления от пристеночного трения в них весьма велики. Общее число капилляров еще больше, однако длина их настолько мала, что падение давления крови в них хотя и существенно, но меньше, чем в артериолах.

В сети венозных сосудов, площадь сечения которых в среднем в два раза больше площади сечения соответствующих артерий, скорость течения крови невысока и падения давления незначительны. В крупных венах около сердца давление становится на несколько миллиметров ртутного столба ниже атмосферного. Кровь в этих условиях движется под влиянием присасывающего действия грудной клетки при вдохе.

Течение крови в сосудистой системе в нормальных условиях имеет ламинарный характер. Оно может переходить в турбулентное при нарушении этих условий, например, при резком сужении просвета сосудов. Подобные явления могут иметь место при неполном открытии или, наоборот, при неполном закрытии сердечных или аортальных клапанов.

39. Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.

Гидравлическое сопротивление сосудов X = 8 l h /(pR 4 ), где l — длина сосуда, R — его радиус, h — коэффициент вязкости, вводится на основании аналогий законов Ома и Пуазейля (движение электричества и жидкости описываются общими соотношениями).

Аналогия между электрическим и гидравлическим сопротивлениями позволяет использовать правило нахождения электрического сопротивления последовательного и параллельного соединений проводника, для определения гидравлического сопротивления системы последовательно или параллельно соединенных сосудов. Так, например, общее гидравлическое сопротивление последовательно и параллельно соединенных сосудов находится по формулам:

Не нашли то, что искали? Воспользуйтесь поиском:

Гемодинамика в одиночном сосуде. Уравнение Паузеля. Гидравлическое сопротивление. Законы общесистемной гемодинамики

Гемодинамика — движение крови по сосудам, возникающее вследствие разности гидростатического давления в различных участках кровеносной системы (кровь движется из области высокого давления в область низкого).

Одиночный сосуд рассматриваем как трубку кругового сечения, протяженную по сравнению со своими поперечными размерами. Под эластичностью стенок понимается возможность изменения сечения сосудов под действием давления.

Пуайзель опытным путем установил, что средняя скорость ламинарного течения жидкости по неширокой горизонтальной круглой трубе постоянного сечения прямо пропорциональна разности давлений Р1 и Р2 при входе и выходи из трубы, квадрату радиуса трубы и обратно пропорциональна длине трубы l и вязкости n.

Это интересно:  Заявление на сокращенный рабочий день

Vср = (R (в кВ) / 8n)*(P1 — P2)/l

Гидравлическое сопротивление, сопротивление движению жидкостей (и газов) по трубам, каналам и т.д., обусловленное их вязкостью.

w = 8nl/пи r (в 4 ст)

Величину w называют гидравлическим сопротивлением. Оно обратно пропорционально четвертой степени радиуса и поэтому значительно возрастает с уменьшением радиуса трубы.

Наряду с ламинарным в сосудистой системе существует турбулентное движение с характерным завихрением крови. Частицы крови перемещаются не только , параллельно оси сосуда, как при ламинарном кровотоке, но и перпендикулярно ей. Результатом такого сложного перемещения является значительное увеличение внутреннего трения жидкости. В этом случае объемная скорость тока крови будет уже не пропорциональной градиенту давления, а примерно равной квадратному корню из него. Турбулентное движение обычно возникает в местах разветвлений и сужений артерий, в участках крутых изгибов сосудов.

Кровь представляет собой взвесь форменных элементов в коллоидно—солевом растворе, она обладает определенной вязкостью, не являющейся величиной постоянной. При протекании крови через капилляр, диаметр которого меньше 1 мм, вязкость уменьшается. Последующее уменьшение диаметра капилляра еще более уменьшает вязкость протекающей крови. Этот гемодинамический парадокс объясняется тем, что во время движения крови эритроциты сосредоточиваются в центре потока. Пристеночный же слой состоит из чистой плазмы с гораздо меньшей вязкостью, по которому легко скользят форменные элементы. В итоге улучшаются условия тока крови и происходит снижение перепадов давления, что, в общем, компенсирует увеличение вязкости крови и снижение скорости ее тока в мелких артериях. Переход от ламинарного движения крови к турбулентному сопровождается значительным ростом сопротивления течению крови.

Соотношение между характером течения жидкости в жестких трубках и давлением обычно определяют по формуле Пуазейля. Используя эту формулу, можно вычислить сопротивление R току крови в зависимости от ее вязкости Ю, длины l и радиуса r сосуда:

Сосудистую систему в целом можно представить в виде последовательно и параллельно соединенных трубок разной длины и диаметра. В случае последовательного соединения общее сопротивление составляет сумму сопротивлений отдельных сосудов:

При параллельном соединении величину сопротивления вычисляют по другой формуле:

Учитывая сложность геометрии сосудов целого организма, ее непостоянство, зависящее от открытия и закрытия шунтов, коллатералей, степени сокращения гладких мышц, эластичности стенок, изменения вязкости крови и других причин, в реальных условиях рассчитать величину сосудистого сопротивления трудно. Поэтому его принято определять как частное от деления кровяного давления Р на минутный объем крови Q:

Для всей сосудистой системы организма в целом эта формула применима лишь при том условии, если в конце системы, т. е. в полых венах вблизи места их впадения в сердце, давление будет близким к нулю. Соответственно при необходимости вычисления сопротивления отдельного участка сосудистой системы формула приобретает вид

Значения P1 и P2 отражают давление в начале и конце определяемого участка.

Основная кинетическая энергия, необходимая для движения крови, сообщается ей сердцем во время систолы. Одна часть этой энергии расходуется на проталкивание крови, другая — превращается в потенциальную энергию растягиваемой во время систолы эластичной стенки аорты, крупных и средних артерий. Их свойства зависят от наличия эластических и коллагеновых волокон, растяжимость которых примерно в шесть раз выше, чем, например, резиновых нитей той же толщины. Во время диастолы энергия стенки аорты и сосудов переходит в кинетическую энергию движения крови.

Это интересно:  Как оформить полис ОМС

Кроме эластичности и растяжимости, т. е. пассивных свойств, сосуды обладают еще способностью активно реагировать на изменение в них кровяного давления. При повышении давления гладкие мышцы стенок сокращаются и диаметр сосуда уменьшается. Таким образом, пульсирующий ток крови, создаваемый функцией сердца, благодаря особенностям аорты и крупных сосудов выравнивается и становится относительно непрерывным.

Основными показателями гемодинамики являются объемная скорость, скорость кругооборота крови, давление в разных областях сосудистой системы.

Объемная скорость движения крови характеризует ее количество (в миллилитрах), протекающее через поперечное сечение сосуда за единицу времени (1 мин). Объемная скорость кровотока прямо пропорциональна перепаду давления в начале и конце сосуда и обратно пропорциональна его сопротивлению току крови. В организме отток крови от сердца соответствует ее притоку к нему. Это означает, что объем крови, протекающей за единицу времени через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков.

Линейная скорость движения крови (v) характеризует скорость перемещения ее частиц вдоль сосуда при ламинарном потоке. Она выражается в сантиметрах в секунду и определяется как отношение объемной скорости кровотока Q к площади поперечного сечения сосуда рr 2 :

Полученная таким образом величина является сугубо средним показателем, так как, согласно законам ламинарного движения, скорость перемещения крови в центре сосуда является максимальной и падает в слоях, прилежащих к сосудистой стенке.

Кровь выталкивается отдельными порциями, поэтому кровоток в аорте и артериях пульсирует. При этом его линейная скорость возрастает в фазе систолы и снижается во время диастолы. В капиллярной сети в силу особенностей строения предшествующих ей артерий пульсовые толчки исчезают и линейная скорость кровотока приобретает постоянный характер.

Гидравлическое сопротивление сосуда зависит

СОПРОТИВЛЕНИЕ СОСУДОВ ГИДРАВЛИЧЕСКОЕ — сопротивление, которое испытывает текущая жидкость вследствие своей вязкости и трения о стенки сосудов и вихревых движений. Сопротивление току жидкости ( R ) тем больше, чем больше вязкость жидкости (η) и длина сосуда (l) и чем меньше его радиус (r); зависимость между этими величинами выражается уравнением Пуазейля:

Однако уравнение не учитывает реальных условий гемодинамики, в частности эластических свойств сосудистой стенки, изменений диаметра сосудов в зависимости от величины давления крови, вихревых движений. Гидравлическое сопротивление (R) представляет отношение движущей силы, т. е. давления ( Р ), к расходу (Q), объему крови, протекающей в единицу времени через исследуемый участок сосудистого русла. Для вычисления общего периферического сопротивления движению крови в сосудах большого или малого круга кровообращения необходимо знать величины давления в начале (Р1) и вконце (Р2) каждого из кругов кровообращения и объем крови (Q), поступившей из желудочков в сосудистую систему и возвратившейся к предсердиям (это количество равно минутному объему крови или сердечному выбросу): R = (P1 — P2) /Q дин•с•см -5 , или усл. ед. Основное сопротивление кровотоку оказывают мелкие органные артерии; на артериальную часть сосудистого русла приходится около 66% общего периферического сопротивления, на капиллярную — около 27% и на венозную — около 7%. Поскольку сосудистая система является совокупностью нелинейных гидравлических сопротивлений, расчетная величина сопротивления сосудов справедлива только для данного давления и данного расхода, т. е. является статистическим сопротивлением.

Статья написана по материалам сайтов: studopedia.ru, studwood.ru, www.cnshb.ru.

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий